Title: Inverses of graphs and reciprocal eigenvalue property.

Speaker: Swarup Panda.

Institute: IIT Kharagpur

- G : a simple, finite, undirected graph.
- G : a simple, finite, undirected graph.
- $V(G)$: vertex set; $E(G)$: edge set.
- Adjacency matrix $A(G)$ or A
- G : a simple, finite, undirected graph.
- $V(G)$: vertex set; $E(G)$: edge set.
- Adjacency matrix $A(G)$ or $A \quad a_{i j}= \begin{cases}1, & \text { if } i \sim j \text { (adjacent) } \\ 0, & \text { otherwise. }\end{cases}$

- G : a simple, finite, undirected graph.
- $V(G)$: vertex set; $E(G)$: edge set.
- Adjacency matrix $A(G)$ or $A \quad a_{i j}= \begin{cases}1, & \text { if } i \sim j \text { (adjacent) } \\ 0, & \text { otherwise. }\end{cases}$

$$
A(G)=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- G : a simple, finite, undirected graph.
- $V(G)$: vertex set; $E(G)$: edge set.
- Adjacency matrix $A(G)$ or $A \quad a_{i j}= \begin{cases}1, & \text { if } i \sim j \text { (adjacent) } \\ 0, & \text { otherwise. }\end{cases}$

$A(G)=\left[\begin{array}{cccccc}0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
- G : a simple, finite, undirected graph.
- $V(G)$: vertex set; $E(G)$: edge set.
- Adjacency matrix $A(G)$ or $A \quad a_{i j}= \begin{cases}1, & \text { if } i \sim j \text { (adjacent) } \\ 0, & \text { otherwise. }\end{cases}$

- $A(G)$ is a $(0,1)$-symmetric matrix of size $n \times n$.
- Matching : A set of disjoint edges.
- Matching : A set of disjoint edges.
- Take a graph G.

- Matching : A set of disjoint edges.
- Take a graph G.

- Perfect matching : A matching which covers all the vertices.
- Matching : A set of disjoint edges.
- Take a graph G.

- Perfect matching : A matching which covers all the vertices.

If a graph has unique perfect matching, then we denote it by \mathcal{M}.

- Matching : A set of disjoint edges.
- Take a graph G.

- Perfect matching : A matching which covers all the vertices.

If a graph has unique perfect matching, then we denote it by \mathcal{M}.

- Let G be a graph with unique perfect matching \mathcal{M} and let $[u, v] \in E(G)$.
- Matching : A set of disjoint edges.
- Take a graph G.

- Perfect matching: A matching which covers all the vertices.

If a graph has unique perfect matching, then we denote it by \mathcal{M}.

- Let G be a graph with unique perfect matching \mathcal{M} and let $[u, v] \in E(G)$.
- The edge $[u, v]$ is called matching edge (resp. nonmatching) if $[u, v]$ in \mathcal{M} (resp. $[u, v]$ in \mathcal{M}).
- William Thomas Tutte supplied a necessary and sufficient condition for a graph to have a perfect matching.
- William Thomas Tutte supplied a necessary and sufficient condition for a graph to have a perfect matching.

Once we have a graph with a perfect matching, then the following questions are natural:

- William Thomas Tutte supplied a necessary and sufficient condition for a graph to have a perfect matching.

Once we have a graph with a perfect matching, then the following questions are natural:
Q_{1} Can we find one perfect matching?
Yes. A famous algorithm of Jack Edmonds finds a perfect matching, if it exists.

- William Thomas Tutte supplied a necessary and sufficient condition for a graph to have a perfect matching.

Once we have a graph with a perfect matching, then the following questions are natural:
Q_{1} Can we find one perfect matching?
Yes. A famous algorithm of Jack Edmonds finds a perfect matching, if it exists.
Q_{2} Can we count the number of perfect matchings?

- William Thomas Tutte supplied a necessary and sufficient condition for a graph to have a perfect matching.

Once we have a graph with a perfect matching, then the following questions are natural:
Q_{1} Can we find one perfect matching?
Yes. A famous algorithm of Jack Edmonds finds a perfect matching, if it exists.
Q_{2} Can we count the number of perfect matchings?

No.

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

$\overline{\text { Open Problem }}$ Characterize the nonsingular graphs.

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

$\overline{\text { Open Problem }}$ Characterize the nonsingular graphs.
$\overline{\text { Godsil, } 1985}$ Let G be a bipartite graph with a unique perfect matching.

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

$\overline{\text { Open Problem }}$ Characterize the nonsingular graphs.
$\overline{\text { Godsil, } 1985}$ Let G be a bipartite graph with a unique perfect matching. Then G is nonsingular.

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

$\overline{\text { Open Problem }}$ Characterize the nonsingular graphs.
$\overline{\text { Godsil, } 1985}$ Let G be a bipartite graph with a unique perfect matching. Then G is nonsingular.
$\overline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching.

Nonsingular Graph We say G is nonsingular to mean that $A(G)$ is nonsingular.

$\operatorname{det}(A) \neq 0$

$$
\operatorname{det}(A)=0
$$

Open Problem Characterize the nonsingular graphs.
$\overline{\text { Godsil, } 1985}$ Let G be a bipartite graph with a unique perfect matching. Then G is nonsingular.
$\overline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.

- Suppose that G is nonsingular.
- Suppose that G is nonsingular. How does $A(G)^{-1}$ look like?
- Suppose that G is nonsingular. How does $A(G)^{-1}$ look like?
- It can be a matrix without a negative entry, eg. P_{2}.
- Suppose that G is nonsingular. How does $A(G)^{-1}$ look like?
- It can be a matrix without a negative entry, eg. P_{2}.
- It can be a matrix with a negative entry, eg. P_{4}.
- Suppose that G is nonsingular. How does $A(G)^{-1}$ look like?
- It can be a matrix without a negative entry, eg. P_{2}.
- It can be a matrix with a negative entry, eg. P_{4}.
$\overline{\text { Problem }}$ Characterize the nonsingular graphs G such that $A(G)^{-1}$ is nonnegative.
- Suppose that G is nonsingular. How does $A(G)^{-1}$ look like?
- It can be a matrix without a negative entry, eg. P_{2}.
- It can be a matrix with a negative entry, eg. P_{4}.
$\overline{\text { Problem }}$ Characterize the nonsingular graphs G such that $A(G)^{-1}$ is nonnegative.

Harary \& Minc, 1976 Let G be a nonsingular graph. Then $A(G)^{-1}$ is nonnegative if and if $G=P_{2}$.
$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.
$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.

- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular.
$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.
- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose that, there exists a signature matrix S such that
$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.
- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose that, there exists a signature matrix S such that

$$
A^{\prime}:=S A(G)^{-1} S \geq 0 \quad \text { (entrywise nonnegative). }
$$

$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.

- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose that, there exists a signature matrix S such that

$$
A^{\prime}:=S A(G)^{-1} S \geq 0 \quad \text { (entrywise nonnegative). }
$$

- Then A^{\prime} is the adjacency matrix of a 'unique graph $G^{+\prime}$.
$\overline{\text { Signature matrix }}$ A diagonal matrix S with diagonal entries from $\{1,-1\}$.
- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose that, there exists a signature matrix S such that

$$
A^{\prime}:=S A(G)^{-1} S \geq 0 \quad \text { (entrywise nonnegative). }
$$

- Then A^{\prime} is the adjacency matrix of a 'unique graph $G^{+\prime}$.
- We call G^{+}the inverse graph of G and
$\overline{\text { Signature matrix }} A$ diagonal matrix S with diagonal entries from $\{1,-1\}$.
- [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose that, there exists a signature matrix S such that

$$
A^{\prime}:=S A(G)^{-1} S \geq 0 \quad \text { (entrywise nonnegative). }
$$

- Then A^{\prime} is the adjacency matrix of a 'unique graph $G^{+\prime}$.
- We call G^{+}the inverse graph of G and we say G is invertible.

${ }_{2}^{1} \begin{gathered}4 \\ 2 \\ 2\end{gathered}$
 G

${ }_{2}^{1} \quad$| 4 |
| :--- |
| 3 |
| 2 |

$14 \quad A(G)=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad A(G)^{-1}=\left[\begin{array}{cccc}0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0\end{array}\right]$

G
$14 \quad A(G)=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad A(G)^{-1}=\left[\begin{array}{cccc}0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0\end{array}\right]$
G
Take a signature matrix $S=$$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]$
$14 \quad A(G)=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad A(G)^{-1}=\left[\begin{array}{cccc}0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0\end{array}\right]$
G
Take a signature matrix $S=$$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]$
$\begin{aligned} S A(G)^{-1} S & =\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{cccc}0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right] \\ & \left.=\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right] \rightarrow \longrightarrow \begin{array}{l}2\end{array}\right]\end{aligned}$

b) A graph without inverse:

Hückel Graph

- The Hückel graph is used to model the molecular orbital energies of hydrocarbon.

- The Hückel graph is used to model the molecular orbital energies of hydrocarbon.
$\overline{\text { Yates } 1978}$ It has been shown that many families of Hückel graphs are bipartite graphs with unique perfect matchings.

- The Hückel graph is used to model the molecular orbital energies of hydrocarbon.
$\overline{\text { Yates } 1978}$ It has been shown that many families of Hückel graphs are bipartite graphs with unique perfect matchings.
- The amount of energy to remove an electron from a hydrocarbon is correlated with the least positive eigenvalue of the corresponding Hückel graph.
- In 1978, Cvetkovic, Gutman and Simic have introduced the pseudo-inverse graph of a graph. Let G be a graph. The pseudo-inverse graph $P I(G)$ of G is a graph, defined on the same vertex set as G, and in which the vertices x and y are adjacent if and only if $G-x-y$ has a perfect matching. For example the graph
for which $P I(G)=G$ and $\sigma(G)=\sigma(P I(G))=\{-2,0,0,2\}$, but $1 / \lambda \in$ $\sigma(P I(G))$ whenever $\lambda \in \sigma(G)$ is not true.
- In 1988, Buckley, Doty and Harary have introduced the signed inverse graph of a graph. A signed graph is a graph in which each edge has a positive or negative sign, see [?]. An adjacency matrix of a signed graph is symmetric and each entry is 0,1 , or -1 . Let G be a nonsingular graph. The graph G has a signed inverse if $A(G)^{-1}$ is the adjacency matrix of some signed graph H.
- In 1990, Pavlikova and Jediny have introduced another notion of inverse graph of a graph. The inverse graph of a nonsingular graph with the spectrum $\lambda_{1}, \ldots, \lambda_{n}$ is a graph with the spectrum $1 / \lambda_{1}, \ldots, 1 / \lambda_{n}$. This type of inverse graph of a graph need not be unique.

One can construct a class of graphs which have more than one inverse graphs.

G

H

- Let $G \in \mathcal{H}$ and $P=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ be a path.
- Let $G \in \mathcal{H}$ and $P=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ be a path.
- The path P is called an alternating path if the edges on P are alternately matching and nonmatching edges.
- Let $G \in \mathcal{H}$ and $P=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ be a path.
- The path P is called an alternating path if the edges on P are alternately matching and nonmatching edges.
- We say P is an $m m$-alternating path (matching-matching-alternating path) if P is an alternating path and $\left[u_{1}, u_{2}\right],\left[u_{k-1}, u_{k}\right] \in \mathcal{M}$.
- Let $G \in \mathcal{H}$ and $P=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ be a path.
- The path P is called an alternating path if the edges on P are alternately matching and nonmatching edges.
- We say P is an $m m$-alternating path (matching-matching-alternating path) if P is an alternating path and $\left[u_{1}, u_{2}\right],\left[u_{k-1}, u_{k}\right] \in \mathcal{M}$.
- We say P is an nn-alternating path (nonmatching-nonmatching-alternating path) if P is an alternating path and $\left[u_{1}, u_{2}\right],\left[u_{k-1}, u_{k}\right] \notin \mathcal{M}$.

Path Type
$\overline{\left[i, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, j\right] \quad \text { mm-alternating }}$

Path
Type

$\left[i, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, j\right]$	mm-alternating
$\left[i_{1}, x_{1}, x_{2}, x_{3}, x_{4}, i_{2}\right]$	nn-alternating path

$\left[i, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, j\right]$	mm-alternating
$\left[i_{1}, x_{1}, x_{2}, x_{3}, x_{4}, i_{2}\right]$	nn-alternating path

Path
Type

$\left[i, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, j\right]$	mm-alternating
$\left[i_{1}, x_{1}, x_{2}, x_{3}, x_{4}, i_{2}\right]$	nn-alternating path

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching.
- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then
- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .
- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .
path $\quad(\|P\|-1) / 2$ contribution
- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

- Theorem[Barik and Pati, 2007] Take G be a bipartite graph with a unique perfect matching. Let $B=A(G)^{-1}$. Then

$$
b_{i j}=\sum_{P \in \mathcal{P}_{i j}}(-1)^{(\|P\|-1) / 2}
$$

where $\mathcal{P}_{i j}$ is the set of all mm-alternating $i-j$-paths.

- Take this G.

- There are two mm-alternating paths from 8 to 1 .

path	$(\\|P\\|-1) / 2$	contribution
$[8,7,6,5,4,3,2,1]$	3	-1
$[8,2,1]$	1	-1
		So $b_{81}=-2$

$\overline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.

- Let $G \in \mathcal{H}$.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
$\overline{\mathcal{H}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

$\overline{\mathcal{H}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

$\overline{\mathcal{H}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite \Rightarrow
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true?
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true? No.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true? No.

$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true? No.

- Its inverse is P_{6}. But G / \mathcal{M} is not bipartite here.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true? No.

- Its inverse is P_{6}. But G / \mathcal{M} is not bipartite here.
$\underline{\overline{\mathcal{H}}}$ The class of bipartite graphs with a unique perfect matching. We always denote the matching by \mathcal{M}.
- Let $G \in \mathcal{H}$. Contract the matching edges. The result is G / \mathcal{M}.
- Example:

- Theorem [Godsil 1985] $G \in \mathcal{H}, G / \mathcal{M}$ is bipartite $\Rightarrow G^{+}$exists.
- Question Is the converse true? No.

- Its inverse is P_{6}. But G / \mathcal{M} is not bipartite here.
- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses.
- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses. Godsil, 1985 Characterize graphs in \mathcal{H} which have inverses.
- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses. $\overline{\text { Godsil, } 1985}$ Characterize graphs in \mathcal{H} which have inverses.

Akbari \& Kirkland, 2007 Characterized unicyclic graphs in \mathcal{H} having inverses.

- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses. $\overline{\text { Godsil, } 1985}$ Characterize graphs in \mathcal{H} which have inverses.

Akbari \& Kirkland, 2007 Characterized unicyclic graphs in \mathcal{H} having inverses.
$\overline{\text { Godsil } 1985}$ Gave an interesting example of a graph with an inverse.

- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses.
$\overline{\text { Godsil, } 1985}$ Characterize graphs in \mathcal{H} which have inverses.

Akbari \& Kirkland, 2007 Characterized unicyclic graphs in \mathcal{H} having inverses.
$\overline{\text { Godsil } 1985}$ Gave an interesting example of a graph with an inverse.

Solid edges are matching edges.

- Godsil showed that graphs in the subclass \mathcal{H}_{g} of \mathcal{H} have inverses.
- Nonsingular trees are in the Godsil class. So they have inverses. $\overline{\text { Godsil, } 1985}$ Characterize graphs in \mathcal{H} which have inverses.

Akbari \& Kirkland, 2007 Characterized unicyclic graphs in \mathcal{H} having inverses.
$\overline{\text { Godsil } 1985}$ Gave an interesting example of a graph with an inverse.

Solid edges are matching edges.

- A satisfactory explanation remained to be found.
- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$.
- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- An extension at $[u, v]$ is called even type (resp. odd type) if the number of nonmatching edges on that extension is even (resp. odd).
- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- An extension at $[u, v]$ is called even type (resp. odd type) if the number of nonmatching edges on that extension is even (resp. odd).

- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- An extension at $[u, v]$ is called even type (resp. odd type) if the number of nonmatching edges on that extension is even (resp. odd).

- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- An extension at $[u, v]$ is called even type (resp. odd type) if the number of nonmatching edges on that extension is even (resp. odd).

- Let $G \in \mathcal{H}$ and $[u, v] \notin \mathcal{M}$.
- Let $[u, v] \notin \mathcal{M}$. An extension at $[u, v]$ is an nn-alternating u - v-path other than $[u, v]$.
- An extension at $[u, v]$ is called even type (resp. odd type) if the number of nonmatching edges on that extension is even (resp. odd).

- We say $[u, v]$ is an odd type edge, if there are no extensions at $[u, v]$ or each extension at $[u, v]$ is odd type.
- We say $[u, v]$ is an odd type edge, if there are no extensions at $[u, v]$ or each extension at $[u, v]$ is odd type.
- We say $[u, v]$ is an even type edge, if each extension at $[u, v]$ is even type.
- We say $[u, v]$ is an odd type edge, if there are no extensions at $[u, v]$ or each extension at $[u, v]$ is odd type.
- We say $[u, v]$ is an even type edge, if each extension at $[u, v]$ is even type.
- We say $[u, v]$ is mixed type edge, if it has an even type extension and an odd type extension.

Path
Type
[$\left.i_{1}, x_{1}, x_{2}, x_{3}, x_{4}, i_{2}\right]$ odd type extension

Path
Type
[$\left.i_{1}, x_{1}, x_{2}, x_{3}, x_{4}, i_{2}\right]$ odd type extension

$\left[i_{5}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, i_{6}\right]$	even type extension
$\left[u_{4}, u_{5}\right]$	odd type edge

- Take a bipartite graph G with a unique perfect matching.
- Take a bipartite graph G with a unique perfect matching.
- \mathcal{E} is the set of all even type edges in G.
- Take a bipartite graph G with a unique perfect matching.
- \mathcal{E} is the set of all even type edges in G.
- By $(G-\mathcal{E}) / \mathcal{M}$ denote the graph obtained by deleting all the even type edges and then contracting each matching edge to a single vertex.
- Take a bipartite graph G with a unique perfect matching.
- \mathcal{E} is the set of all even type edges in G.
- By $(G-\mathcal{E}) / \mathcal{M}$ denote the graph obtained by deleting all the even type edges and then contracting each matching edge to a single vertex.
$\overline{\text { Panda \& Pati, } 2016}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
- Take a bipartite graph G with a unique perfect matching.
- \mathcal{E} is the set of all even type edges in G.
- By $(G-\mathcal{E}) / \mathcal{M}$ denote the graph obtained by deleting all the even type edges and then contracting each matching edge to a single vertex.
$\overline{\text { Panda \& Pati, } 2016}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,

- Take a bipartite graph G with a unique perfect matching.
- \mathcal{E} is the set of all even type edges in G.
- By $(G-\mathcal{E}) / \mathcal{M}$ denote the graph obtained by deleting all the even type edges and then contracting each matching edge to a single vertex.
$\overline{\text { Panda \& Pati, } 2016}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
Then G^{+}exists if and only if $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

- This graph satisfies the above hypothesis as, $\mathcal{E}=\{[1,2]\}$ and $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

> Solid edges are matching edges.

- This graph satisfies the above hypothesis as, $\mathcal{E}=\{[1,2]\}$ and $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

> Solid edges are matching edges.

- Hence it has an inverse.
- This graph satisfies the above hypothesis as, $\mathcal{E}=\{[1,2]\}$ and $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Solid edges are matching edges.

- Hence it has an inverse.
S. K. Panda and S. Pati, On some graphs which possess inverses, Linear and Multilinear Algebra, 64(7)(2016), pp. 1445-1459.
- This graph satisfies the above hypothesis as, $\mathcal{E}=\{[1,2]\}$ and $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Solid edges are matching edges.

- Hence it has an inverse.
S. K. Panda and S. Pati, On some graphs which possess inverses, Linear and Multilinear Algebra, 64(7)(2016), pp. 1445-1459.
- Graphs in \mathcal{H} that have inverses are now characterized in Yang \& Ye 2017.

Godsil \& Mckay, 1978
Property SR A nonsingular graph G is said to satisfy the strong reciprocal eigenvalue property or property $S R$ if $1 / \lambda$ is an eigenvalue of $A(G)$ whenever λ is an eigenvalue of $A(G)$ and both have the same multiplicity.
$\overline{\text { Property } R}$ When the multiplicity condition is relaxed, we say G has the reciprocal eigenvalue property or property R.

λ	Multiplicity	$1 / \lambda$	Multiplicity
$-\frac{\sqrt{3-\sqrt{5}}}{\sqrt{2}}$	1	$-\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}$	1
$\frac{\sqrt{3-\sqrt{5}}}{\sqrt{2}}$	1	$\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}$	1

λ	Multiplicity	$1 / \lambda$	Multiplicity
$\frac{-1-\sqrt{5}}{2}$	1	$\frac{1-\sqrt{5}}{2}$	2
$\frac{-1+\sqrt{5}}{2}$	1	$\frac{1+\sqrt{5}}{2}$	2
$\frac{\sqrt{2(13-\sqrt{41})}-(\sqrt{41}-1)}{4}$	1	$\frac{-\sqrt{2(13-\sqrt{41})}-(\sqrt{41}-1)}{4}$	1
$\frac{\sqrt{2(13+\sqrt{41})}+\sqrt{41}+1}{4}$	1	$\frac{-\sqrt{2(13+\sqrt{41})}+\sqrt{41}+1}{4}$	1

CoronaFrucht \& Harary, 1970 A graph G is called a corona, if it is obtained from some other graph H by adding a new pendant (degree one) vertex at each vertex of H.

CoronaFrucht \& Harary, 1970 A graph G is called a corona, if it is obtained from some other graph H by adding a new pendant (degree one) vertex at each vertex of H.

Example

CoronaFrucht \& Harary, 1970 A graph G is called a corona, if it is obtained from some other graph H by adding a new pendant (degree one) vertex at each vertex of H.

Example

CoronaFrucht \& Harary, 1970 A graph G is called a corona, if it is obtained from some other graph H by adding a new pendant (degree one) vertex at each vertex of H.

Example

Godsil \& Mckay, 1978 Let T be a nonsingular tree.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property SR
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property SR \equiv
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree. T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree. T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property R
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree. T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv$
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree. T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree. T has property $\mathrm{R} \equiv T$ is corona.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv T$ is corona.
Combining a list of known results we have the following result.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv T$ is corona.
Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv T$ is corona.
Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.
a) T has property $S R$.
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv T$ is corona.
Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.
a) T has property $S R$.
b) T has property R .
$\overline{\text { Godsil \& Mckay, } 1978}$ Let T be a nonsingular tree.
T has property $\mathrm{SR} \equiv T$ is corona.
$\overline{\text { Barik \& Pati, } 2016}$ Let T be a nonsingular tree.
T has property $\mathrm{R} \equiv T$ is corona.
Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.
a) T has property $S R$.
b) T has property R .
c) T is corona.
$\overline{\text { Godsil \& Mckay, } 1978}$ Gave an interesting example of a graph with Property SR.

Godsil \& Mckay, 1978 Gave an interesting example of a graph with Property SR.

Solid edges are matching edges.

Godsil \& Mckay, 1978 Gave an interesting example of a graph with Property SR.

Solid edges are matching edges.

- A satisfactory explanation remained to be found.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
2. G has no mixed type edges,
3. no two even type extensions at two distinct even type edges have an odd type edge in common and,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
4. G has no mixed type edges,
5. no two even type extensions at two distinct even type edges have an odd type edge in common and,
6. each even type edge has atleast two even type extensions,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
7. G has no mixed type edges,
8. no two even type extensions at two distinct even type edges have an odd type edge in common and,
9. each even type edge has atleast two even type extensions,
10. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
11. G has no mixed type edges,
12. no two even type extensions at two distinct even type edges have an odd type edge in common and,
13. each even type edge has atleast two even type extensions,
14. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property $S R$.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property $S R$.
d) G has property R.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property $S R$.
d) G has property R.
$\overline{\text { Pati \& Panda, } 2017} \overline{\text { Boxminus Corona }}$ Let H be a connected bipartite corona graph. Let S be a subset of nonmatching edges of H such that each cycle in H has an even number of edges from S.
$\overline{\text { Pati \& Panda, } 2017} \overline{\text { Boxminus Corona }}$ Let H be a connected bipartite
corona graph. Let S be a subset of nonmatching edges of H such that each cycle in H has an even number of edges from S.

Let boxminus corona H_{S}^{\boxminus} be the graph created from H by adding two even type extensions of length 3 at each edge $e \in S$.
This is same as replacing each $[u, v] \in S$ with the the following boxminus graph.

Example:

Example:

Example:

Example:

H

$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
2. G has no mixed type edges,
3. no two even type extensions at two distinct even type edges have an odd type edge in common and,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
4. G has no mixed type edges,
5. no two even type extensions at two distinct even type edges have an odd type edge in common and,
6. each even type edge has atleast two even type extensions,
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
7. G has no mixed type edges,
8. no two even type extensions at two distinct even type edges have an odd type edge in common and,
9. each even type edge has atleast two even type extensions,
10. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition
11. G has no mixed type edges,
12. no two even type extensions at two distinct even type edges have an odd type edge in common and,
13. each even type edge has atleast two even type extensions,
14. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property $S R$.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property $S R$.
d) G has property R.
$\overline{\text { Panda \& Pati, } 2017}$ Let G be a bipartite graph with a unique perfect matching such that G satisfies the following condition

1. G has no mixed type edges,
2. no two even type extensions at two distinct even type edges have an odd type edge in common and,
3. each even type edge has atleast two even type extensions,
4. $(G-\mathcal{E}) / \mathcal{M}$ is bipartite.

Then the following are equivalent.
a) $\frac{1}{\rho}$ is the smallest positive eigenvalue G.
b) G is isomorphic to G^{+}.
c) G has property SR .
d) G has property R. e) G is boxminus corona.

- Open Problems

- Characterize the bipartite graphs with unique perfect matching which are self inverse.
- Is there any bipartite graphs with unique perfect matching which satisfies property R but not SR .
- Characterize the bipartite graphs with unique perfect matching which satisfy property R.
- Characterize the bipartite graphs with unique perfect matching which satisfy property SR.
- Characterize the self-inverse bipartite graphs with unique perfect matching which satisfy property SR.
- S. Akbari and S. J. Kirkland. On unimodular graphs. Linear Algebra and its Applications, 421 (2007), pp. 3-15.
- R. Frucht and F. Harary. On the corona of two graphs. Aequationes Mathematicae, 4 (1970), pp. 322-325.
- C. D. Godsil and B. D. Mckay. A new graph product and its spectrum. Bull. Austral. Math. Soc., 18(1978), pp. 21-28.
- C. D. Godsil. Inverses of trees. Combinatorica, 5(1) (1985), pp. 33-39.
- F. Harary and H. Minc. Which nonnegative matrices are self-inverses?. Math. Mag, 49 (1976), pp. 91-92.
- S. K. Panda and S. Pati. On The Inverse Of A Class Of Bipartite Graphs With Unique Perfect Matchings. Electronic Journal of Linear Algebra, 29 (2015), pp. 89-01.
- S. K. Panda and S. Pati. On some graphs which possess inverses. Linear Multilinear Algebra, 64(7) (2016), pp. 1445-1459.
- R. B. Bapat, S. K. Panda and S. Pati. Strong reciprocal eigenvalue property of a class of weighted graphs. Linear Algebra and its Applications, 511(2016), pp. 460-475.
- S. K. Panda and S. Pati. Inverses of weighted graphs. Linear Algebra and its Applications, 532 (2017), pp. 222-230.
- R. B. Bapat, S. K. Panda and S. Pati. Self-inverse unicyclic graphs and strong reciprocal eigenvalue property. Linear Algebra and its Applications, 531(2017), pp. 459-478.
- Y. Yang and D. Ye. Inverses of bipartite graphs. Combinatorica, online 2017.
- R. M. Tifenbach, S. J. Kirkland. Directed intervals and dual of a graph. Linear Algebra and its Applications, 431 (2009), pp. 792-807.
- M. Neumann and S. Pati. On reciprocal eigenvalue property of weighted trees. Linear Algebra and its Applications, 438 (2013), pp. 3817-3828.

Thank You.

